
FR-8047

Use of Abstract Interfaces in the Development of Software
for Embedded Computer Systems

D.L. Parnas

June 3, 1977

Naval Research Laboratory

SECUnITY CLASSIFICATION OF THIS PAGE (When Date Entr*.d)

REPORT DOCUMENTATION PAGE READ NSTRUCTIONO

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
NRL Report 8047

4. TITLE (end Subtle) S. TYPE OF REPORT & PERIOD COVERED
USE OF ABSTRACT INTERFACES IN THE Interim report on a continuing
DEVELOPMENT OF SOFTWARE FOR EMBEDDED NRL Problem
COMPUTER SYSTEMS 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) a. CONTRACT OR GRANT NUMEER('a)

DAVID L. PARNAS

9. PERFORMING ORGANIZATION NAME AND ADORESS tO. PROGRAM ELEMENT PROJECT, TASK
AREA & WORK UNIT NUMBERS

Naval Research Laboratory NRL Problem B02-18
Washington, D.C. 20375 Project -XF21-241
Code 5403

II. CONTROLLING OFFICE NAME AND ADDRESS Q. REPORT DATE
Naval Research Laboratory June 3, 1977
Washington, D.C. 20375 13. NUMBER OF PAGES

33
14. MONITORING AGENCY NAME & ADDRESSOit different from Controlling OWf ye) 15. SECURITY CLASS. (of this report)

Naval Electronics Systems Comrmand UNCLASSIFIED
Arlington, Virginia 20360

15a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abatract entered int lock 20, it dfferent from Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS rConrnue on roverae .ide If necee and identity by block number)

Software Abstract interfaces
Software engineering Interfaces
Abstraction Programming
Embedded computer systems

4u. ABS1TRKACT (ContFineE1 on t vryVJ4 616iteI nces ary and fdenfW~ by block ntimbor)

This report describes a procedure for designing computer systems that are developed specifically
to be a component of a more complex system. Two significant characteristics of such design problems
are the following: the computer system interface is determined by factors outside the control of the
computer system designer, and the specifications of that interface are likely to change throughout the
life cycle of the system. The purpose of the procedure described in this report is to reduce "maintenance"
costs by means of a software organization that insulates most of the programs from changes in the
interface. The procedure is based on the systematic compilation of an assumption list. The assumption

(Continued)

DD JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE
S/N 0102-LF-014-6601 i

SECURITY CLASSI FICATION OF THIS PAGE (hien Data Sfnor"

I

SECURTY CLASSIFICATION OF TIHIS PAGS (When Data Entered)

20. Abstract (Continued)

list describes those aspects of the interface that future users and other knowledgeable persons consider
essential and therefore stable. Other aspects of the interface are ignored, An abstract ierface is
designed on the basis of this assumption list. A specification of the abstract interface is used to procure
the major components of the system.

This report explains tne principles behind the procedure and illustrates its use- The success of
the procedure is piimxafly limited by the ability of designers and future users to compile an accurate
list of assumptions. A side benefit of the procedure is simpler, better structured software. Sucgessful
application of the procedure should result in both increased reliability and reduced lift-cycle costs.

ii
SECURITY CLASSIFICATION OFTHIS PAGE(Vtan 049. &ttetQ

CONTENTS

INTRODUCTION , .. I

EXAMPLES. 2

A Message-Forwarding Station for an Existing Communication Network. 2
Radar Data Analysis. 3
Address-List Processors. 3

APPLYING THE "INFORMATION HIDING PRINCIPLE" WHEN EXTERNAL
INTERFACES MAY CHANGE. . 3

"ABSTRACT" INTERFACES ... 5
What is an Abstraction? . 5

Why are Abstractions Useful? . 5
What is an Interface? . 6
What is an Abstract Interface? . 6

A SIMPLE EXAMPLE: A SYSTEM TO PROCESS DATES. 7
Compiling and Checking the List of Assumptions 7
Designing the Interface. 9

SUMMARY OF THE PROPOSED METHODOLOGY 9I 9

A LARGER EXAMPLE: A SYSTEM TO PROCESS MAILING LISTS .10

ON THE NEED FOR ASSUMPTIONS THAT ARE NOT SHARED BY
ALL POSSIBLE INTERFACES .24

COMPLETING THE SYSTEM BY STEPWISE ADDITION OF ASSUMPTIONS .24

WHERE IS THE SEMANTIC SPECIFICATION? 25

IMPLEMENTATION CONSIDERATIONS AND LANGUAGE LIMITATIONS .25

CONCLUDING REMARKS .29

REFERENCES 29

ACKNOWLEDGMENTS .. 30

Hii

USE OF ABSTRACT INTERFACES IN THE DEVELOPMENT
OF SOFTWARE FOR EMBEDDED COMPUTER SYSTEMS

INTRODUCTION

This report describes an approach to software design and procurement that should be
useful in the acquisition of software for embedded computer systems. We will refer to a com-
puter system as embedded whenever it is specifically developed to function as a component of a
significantly larger system. This is intended to distinguish embedded computer systems from
computer systems that are developed as general mechanisms to be used in vaguely specified
applications. A "general purpose" operating system is an example of a nonembedded system;
the "message processors" developed for use in communication networks are good examples of
embedded systems.

Although we cannot precisely delineate embedded and nonembedded systems, the. sys-
tems with which we are concerned have the following characteristics:

* The designer of the embedded computer system is not free to define the interface to
his system. He is required to meet an interface that was determined by factors beyond his
control. For example, he cannot define the input language or specify the character set to be
used.

* The constraints placed on the computer system by the interface requirements are strict
and often quite arbitrary. The external system is not tolerant of deviations; a system may
come very close to meeting the requirements and still require very extensive modifications be-
fore it can be used.

* The interface often changes during the period in which the computer system is
developed. The system in which the computer system is embedded may be being developed at
the same time, or it may be undergoing evolutionary changes while in use. Because the com-
puter system is only one of many components, the effects of any changes on the computer sys-
tem are given relatively little consideration.

* Often there are several similar systems with similar requirements, but the interface re-
quirements are so strict that it is not practical to modify one computer system to replace the
other. This may happen because of evolutionary changes or because two different contractors
have "total system" responsibility. In such cases, there is a great deal of duplicated effort.

This description of an embedded system is somewhat broader than the standard military
definition of "embedded." We include other systems which have many of the same problems.
Many of the statements we make hold for a broader class of systems, but the problems are
more acute in embedded systems.

Manuscript submitted April 13, 1977.

I

DAVID L. PARNAS

These characteristics place those who must write software specifications in a dilemma
described by the following statements:

* Those who will produce the software must be provided with a precise description of
the requirements that the software must meet. Without a precise specification, the chances
that the product will be statisfactory are low; without specifications, one must depend on the
good will of the software developer, because one cannot prove that a product is defective.

* The details of the interface must be considered unknown. It is almost certain that the
requirements that one could describe in a contract will not be the same as the requirements
that must be satisfied when the system is used.

* Systems developed to meet old interfaces are often surprisingly hard to adapt to the
current interface. Many early design decisions have been based on information which is no
longer valid 11]. Finding those portions of the code that must be changed is difficult, time con-
suming, and expensive.

* Finding an alternative source of supply for changes is unlikely. Knowledge of imple-
mentation details is needed to make changes. Competition does not hold the price down.

The subject of this report is one way to escape from this dilemma. This report proposes
an organization of the software that results in divorcing the majority of the code from the tight
constraints.

EXAMPLES

To illustrate the problem, we describe three examples of embedded computer systems,
emphasizing the reasons that the interfaces can be expected to change.

A Message-Forwarding Station for an
Existing Communication Network

A not unusual application of a computer is to automate the work of the human operator
at a relay point in a communications system. The operator must observe incoming messages
and detect those that require action on his part. In addition to delivering messages to addres-
sees, he must keep logs and assist in the preparation and transmission of outgoing messages.
Many communication networks have complex coventions for identifying and routing messages.
The conventions are especially complex if the channels in use may be noisy. Often the con-
ventions have evolved to a point where they appear completely arbitrary and capricious.
Nevertheless the conventions must be strictly observed or messages may go astray. If a hu-
man operator at one station is replaced by a computer, the system conventions will not change.
The computer will have to meet the same interface as the man did. Most improvements in
routing conventions, etc., will be made to increase communication effectiveness (priority
schemes, etc.), not to make programming easier. Although the functions to be performed will
not change much, the interface can be expected to change repeatedly both during the program-
ming and after the system becomes operational.

2

NRL REPORT 8047

Radar Data Analysis

Computers are often used to process data obtained from radar units to prepare displays
for human operators and detect significant events. The requirements to be met by the comput-
er system are determined primarily by

* physical laws (propagation characteristics, gravity, air resistance),

* radar and associated communications technology,

* traffic conventions (such as minimum safe distances),

* human characteristics (these are man-machine systems), and

* display technology.
It is significant that "computer characteristics" is not in this list of determining factors; the
computer system is expected to adapt to an interface constrained by these factors, not vice ver-
sa. Although the physical laws can be assumed to stay constant, the other factors can and do
change.* Improvements in radar technology, traffic patterns, etc. will not be renounced in ord-
er to save the cost of computer system revision.

Address-List Processors

A somewhat less obvious example of an embedded system is a system to process address
lists stored on tapes or other files. Postal-system conventions determine the addressing con-
ventions. The interface conventions are not quite as strict or arbitrary as in the above exam-
ples, but they must nonetheless be observed. One can easily imagine the reaction of a U.S.
postman to a letter addressed according to the German convention: city before street, zip code
before city, house number after street. Our postal system would attempt to interpret the house
number as a zip code, the street name as a town, the town name as a street name, and the zip
code as a house number. Moreover the conventions change. A change in the German system
(to place street before town) was recently announced. Since address lists are often purchased
from a variety of sources, there are many input formats.

APPLYING THE INFORMA TION HIDING PRINCIPLE
WHEN EXTERNAL INTERFACES MAY CHANGE

References 1 through 3 have introduced a guideline for use in making the early design
decisions in software design - particularly those decisions that determine the decomposition of
the system into components for independent design (and later independent modification).
This has been called the information hiding principle. Essentials of the procedure suggested are
the following:

1. Identify a list of design decisions for which change cannot be ruled out (data structure,
algorithms, etc.).

'Some readers may object to the statement that 'human characteristics" will change. Although human beings as a class
may stay the same, it is not infrequent to replace one class of operators with another (for example, to replace college
educated engineers with specially trained technicians). Further, our understanding of the best way to communicate
with humans may improve, and this is effectively the same as a change in the characteristics of the operator.

3

DAVID L. PARNAS

2. Make each design decision the 'secret" of one module. In other words, the programs
that cannot be coded without knowledge of this decision comprise a module. No program is in
two such modules.

3. Design the module interface. The interface consists of the "subprograms" needed by
the module user in order to make use of the module's data structures and algorithms without
knowing the design decision that is being hidden. This interface is so designed that it can be
kept unchanged even if the data structures or algorithm must be revised. The set of programs
is kept minimal in the sense that only those that cannot be efficiently performed without direct
access to internal data are in the module. Most of the tasks that require the data are performed
using the interface functions.

Readers who are encountering this idea for the first time should read Refs. 2 through 4
before continuing.

The information hiding principle was developed and presented as a means of reducing
the cost of changes in internal design. Here external aspects are likely to change. The infor-
mation hiding principle suggests a system structure in which those aspects of the external in-
terface that are likely to change are hidden from the bulk of the system.

Such a system would have a structure such as that shown in Fig. 1. The large box
represents those programs whose function is not dependent on volatile details of the interface.
The small box has the changeable aspect of the world as its 'secret." The designer can now
design the interface to the large box relatively free of the constraints associated with embedded
systems. Diagrams such as Fig. 1 are much easier to draw than they are to realize. We have
not yet demonstrated that such an organization is feasible; we have not shown how to design
the system. We have only reformulated the problem.

APPLICATIONSS

PACKAGE

Fig. I - Structure of a system formulated according to the
information hiding principle

4

NRL REPORT 8047

Our new formulation allows us to propose the following procedure:

1. Specify the "internal" interface, that is, the interface between the little box and the
large box.

2. Obtain an implementation of the large box. The software producer considers the large
box to be the whole system.

3. Near completion of the large box (or whenever the actual interface is really known)
specify the small box. The software in the small box is constrained to use only the specified
interface to the large box. It is not allowed to modify code or refer to data structures that are
part of the large box.

4. Future changes in the external interface should result in changes to the small box but
not the large box.

Again we have reformulated the problem but not solved it. A skeptic may well ask how
we can make 4 come true. We have not shown why such an artifically derived interface is
preferable to our best guess about the actual interface. That is the subject of the next three
main sections.

'ABSTRACT' INTERFACES

What is an Abstraction?

In recent years the word "abstract" has become one of the buzzwords of the computer
field. In some discussions it is used euphemistically to mean vague, unrealistic, or
insufficiently specific. In others it is used to mean formal, highly mathematical, etc. In this re-
port we refer to something as an abstraction if it represents several actual objects but is disasso-
ciated from any specific object.

It is the many-to-one relationship that is critical. For example, differential equations are
one mathematical abstraction that can represent many real systems as diverse as RLC circuits
and collections of springs and weights. An abstraction represents some aspects of the system
but not all. Consider a map as an abstraction representing a road network. This graph may
represent the lengths of the roads, but not the type of pavement or colors. Thus, one such
graph could represent many different road systems, including both black or green, asphalt or
concrete. The common aspects of the road systems (the lengths of the various road segments)
are represented; their differences are not.

Why are Abstractions Useful?

If all properties of the abstract system correspond to properties of the real system, then
we can learn about the real system by studying the abstraction. Everything that is true about
the abstraction corresponds to some fact about the real system, although the reverse need not
be true. The abstraction is usually easier to study. It is far easier to find a good route by
studying a road map than by exploring the road network itself. Abstractions are simpler and
more simply described than the actual objects. With the proper abstractions, we ignore all of

5

D. L. PARNAS

the details that are not relevant to our analysis. More important, any result that we obtain by
studying the abstraction can be reused! It can be applied to other systems that the abstraction
represents. For example, mathematical results obtained by studying the equations representing
electrical circuits were later applied to the study of electrical motor systems. Directed graphs
provide another example; An incredible variety of problems have been solved by representing
the system as a graph and applying well-known algorithms to find the shortest path, prime cy-
cles, etc.

What is an Interface?

It is often assumed that the interface between two software components may be
described by describing the format of the information that they exchange. This is a gross
oversimplification which has resulted in a great many expensive errors. A complete description
of the interface must include a statement of all of the assumptions that each component makes
about the other 13]. Anything less is not a complete description of the ways (intended and
unintended) that the two components might interact. The list of assumptions usually includes
an explicit description of the intended interactions; unintentional interactions can occur if one
of the components violates an assumption that the other makes.

A description of the formats used for information exchange does not describe all of the
assumptions. Assumptions about the meaning of the information, resource usage, etc. must
also be described. In fact, one can describe an interface without describing the formats of the
information exchanged, One can define a set of programs to be used for inserting and access-
ing information. One then describes the way that these programs influence each other's
behavior. This can be done without describing the data structure that is used 14L. The
definition of these procedures or programs is a part of the description of the interface between
any components that use the programs to communicate. A description of the formats used by
those functions need not be included, because neither component makes any assumptions
about the format. We repeat: an interface description is a decription of a set of assumptions,
The description of an interface between several programs is not complete unless all of the as-
sumptions that the programs make about each other are included.

What is an Abstract Interface?

We use the phrase abstract interface to refer to a set of assumptions that represents more
than one possible interface. An abstract interface will model some properties of those inter-
faces that it represents but not all. It will describe their common aspects while hiding (or ig-
noring) the differences. It will not generally be sufficient to permit development of a working
system.

As with any valid abstraction, all facts that are true of the abstract interface are true of
any one of the actual interfaces that it represents. It follows that any program that can be
demonstrated to be correct using only the information about the abstract interface will be
correct (usable) for any of the real interfaces represented by the abstract interface.

However the information in the abstract interface, being restricted to that information
that is true for many distinct actual interfaces, is not generally sufficient for the writing of a
complete program. Any programs that we write and verify, using only that information implied

6

NRL REPORT 8047

by the description of the abstract interface, will not be incorrect. They will however assume
the availability of programs that cannot be written without additional information. These pro-
grams are being written by "stepwise refinement" [5,61. They can be completed by adding pro-
grams that use the additional information specific to the actual interface and not true for all in-
terfaces represented by the abstract interface. Those programs constitute the small box in Fig.
1.

In summary, the procedure that we are discussing can be formulated in yet another way:

1. Specify an abstract interface embodying all the information shared by all of the possi-
ble actual interfaces;

2. Procure programs to meet this abstract interface (the large box of Fig. 1);

3. Procure additional programs in order to meet the actual interface (the small box).

A change in the actual interface that does not violate assumptions made in step I can be made
without changing the programs in 2. Step 3 must be repeated whenever such changes occur.

A SIMPLE EXAMPLE: A SYSTEM TO PROCESS DATES

The procedure being discussed can be illustrated by considering the problem of writing a
program that will read in a date from some input media, compute, and print out the date 3
weeks from the input date. There is no standard format for representing dates. Among the
many ways of representing dates are:

February 10, 1941 (month day in month, year),
10 February 1941 (day in month month year),
10 February 41 (day in month month last two digits of year),
10.2.1941 (day in month.integer encoded month.year),
2/10/1941 (integer encoded month/day in month/year),
41.2.10 (last two digits of year.integer encoded month.day in month),
41 February 10 (last two digits of year month day in month),
41,41 (day in year, last two digits of year).

Not only are there many formats, but it is impossible to look at a date and be certain which
format it is in. Consider 10.11.12 or 12 November 10.

In spite of the variety of possible input formats, the algorithm for calculating the new
date need not change if the format changes. It must be possible to organize the program as
suggested by Fig. 1.

Compiling and Checking the List of Assumptions

The first step toward defining the abstract interface (the interface between the two boxes
in Fig. 1) is to list assumptions that we may safely make about all possible input formats:

* It will be possible to calculate the year of the input date. If the two-digit encoding of
the year is used, there will be no doubt about which century is intended. (If anyone is foolish
enough to violate this assumption, the software designer cannot help him.)

7

D. L. PARNAS

* It will be possible to calculate the month of the input date.

* It will be possible to calculate the day of month of the input date.

We have used the phrase "it will be possible to calculate" rather than "the input will contain"
so that our assumptions will be valid even if one changes to the use of a Julian date (41, 1941).
or to some cryptic encoding of the date.

The "list of assumptions" is intended to be a complete list of all that we need to know
about the interface' in order to write the bulk of the code for the system. Such a list should
be checked to make sure that it has neither excess information nor insufficient information.
Excess information is information that is either (a) not needed to design the system or (b) not
known at this time. There is insufficient information if some major portion of the system can-
not be implemented without making additional assumptions.

It is possible that a list of assumptions has insufficient information because, were the in-
formation provided, it would be type-b excess information. Under these circumstances the in-
formation must be designated as a parameter of the design. The design should be carried as far
as possible in terms of this parameter and without assuming a specific value for it.

If we view such an assumption list in this light, innocent looking statements will be
found to have rather far-reaching implications. Consider the following example:

'The message will contain a string that is a unique identifier of the message."

The implications of including this statement in an assumption list are the following:

* In all possible formats it will be possible to find a string that is the unique identifier
mentioned.

* The bulk of the system's code can be written without knowing how to find that string
in the data.

* The bulk of the system's code can be written without knowing any more information
about the string (its length, that it is an integer, that H never appears, or whatever). tf we give
no information about an item except that it is a string, we are stating that the item's structure is unim-
portant.

* The system will never need to distinguish between two messages with the same
identifier. All code may be written assuming that the identifiers never repeat (that a message
is never sent twice).

* Without the assumption of the existence of such a unique identifier, the bulk of the
system's code could not be written.

It is important that the reviewers of such statements recognize that the assumption list
will be used to draw up a specification that will be given to developers instead of information

4The characteristics of the calendar (such as, 30 days hath September...) are not considered part of this interface. It
such assumptions are likely to change, we will hide them in a separate module.

8

NRL REPORT 8047

about the actual interface. Insufficient information in the assumption list will mean that im-
portant functions will not be implemented. Excessive information means that the system
might be unnecessarily restricted in its applicability. Highly critical, careful review is essential.

Designing the Interface

The four assumptions about dates above allow us to assume the ability to implement
integer-valued input procedures, YEAR, MONTH, and DAY that return the year, month of
year, and day of month, respectively. A description of these integer procedures and the assump-
tions about their meaning constitutes the abstract interface. All programs in the large box of Fig.
1 can be written in terms of those procedures. If a new actual interface is encountered, a new
implementation of those procedures will be needed. However, as long as our assumptions
about the input remain valid, the remainder of the program need not be changed.

SUMMARY OF THE PROPOSED METHODOLOGY

The date-processing example given in the preceding section, though extremely simple, il-
lustrates the main steps of the methodology that we are describing. The key to this method is
a departure from the standard view of an interface as a set of formats for data communication.
Instead we consider an interface to be defined by the set of assumptions that the components
make about each other. Recognizing that an abstraction is something that represents many in-
stances, we base the design of an abstract interface on that subset of the assumptions
represented in the various actual interfaces that is true for all actual interfaces. Usually, the
various possible interfaces have too little in common to allow complete programs to be written
on the basis of these assumptions. The assumptions are sufficient to allow us to describe, the
syntax and semantics of a set of functions that can be implemented using additional informa-
tion about an actual interface. Application programs written in terms of these functions are
valid and usable for all input formats that satisfy the stated assumptions. The programs written
to implement these input functions are specific to the particular interface and must be changed
whenever the actual input format changes.

When an embedded computer system is procured and the actual interface to the comput-
er system is not known, the major purchase should be a system that meets only the abstract
interface. The contractor should be given precise specifications for the abstract interface and
should be required to build a system that will work using any valid implementations of the
functions supplied to him. In a typical system most of the code will be in that portion of the
system that assumes the availability of those functions; the programs needed to implement the
interface functions are small. Procurement of these additional programs can usually be delayed
until the main part of the system is almost ready to be used. At this point, one usually knows
enough about the actual interface to write a complete specification. Since precise specifications
of both the actual and the abstract interfaces are available, the coding does not require
knowledge of the internal structure of the remainder of the system. Competitive procurement
may be used.

The success of this method depends on

* our ability to anticipate changes or variations sufficiently well that the assumptions
made in defining the abstract interface prove valid for the actual interface (the oracle assump-
tion) and

9

D. L. PARNAS

* the various possible interfaces having enough in common so that the additional pro-
grams needed to meet the actual interface are significantly smaller than the remainder of the
system (the big-large-box assumption).

If these conditions do not hold) the methodology described may be of little help.

The use of abstract interfaces does not give the implementor of the large box more free-
dom than a conventional approach; it constrains him more tightly. He is prevented from mak-
ing assumptions about the actual format. Even if the same contractor eventually makes both
parts, we are forcing him to make his system better structured by defining this "internal" inter-
face.

A LARGER EXAMPLE: A SYSTEM TO PROCESS MAILING LISTS

This section demonstrates the application of abstract interfaces on a more realistic exam-
ple. The specifications and design were developed by John Guttag, Barbara Trombka, John
Shore1 David Weiss, and the author.

Many organizations maintain lists of addresses. In simple applications the whole list is
used to generate a set of mailing labels or 'personalized" letters. Other applications involve the
selection of addresses of people who are more likely to be interested in the contents of the
mailing. For example, an advertiser who wished to offer a new magazine called Tax Loopholes,
might want to select those addresses that indicate a medical degree. Other advertisers might
want to select all entries within a certain geographic area or to select those addresses with
specific first or last names.

The lists themselves are obtained from many sources and are generally delivered on a
medium such as magnetic tape in a format that corresponds closely to the actual printing for-
mat of the label. Lists obtained from different sources will not usually be in the same format.

A maiiing-list processing system is an example of an embedded system (one subject to
arbitrarily changing constraints), albeit one in which the constraints on the system are not as
strict as in some other situations. The input format is determined by the systems that pro-
duced the tapes; the output format is considerably constrained by the requirements of the po-
stal systems in which the mail will be deposited.

In this example we assume that we are dealing with mailing lists in which all of the ad-
dresses are of persons within government organizations. Even with this assumption, we cannot
assume the input or output formats to be known. Figures 2 and 3 show two possible formats
for addresses - the formats are defined by "fill in the blanks" forms. Were we to procure a
large set of programs to process address lists, we would want to reduce the likelihood of major
changes in the programs being caused by predictable* changes in the input or output format.

To apply our abstract interface methodology, we must list those properties of the ad-
dresses to be processed that can be expected to remain true. This list of assumptions would
then be circulated to all concerned for approval or rebuttal. For our example an intial list of
assumptions might be as shown in Fig. 4.

*In most situations a predicable change is one that the designer had no good reason to consider impossible.

1i

NRL REPORT 8047

Las T I I I mI I
Lest Nam

CLvmn HasN (Frst HKddLe WRIs)

I I I I I I f I I i I Ii I I . 1 1 1
Branch or Code

Cesi or Activity

Street address or P.O. I I

C i I t y I I I I I i I I I I I
C ty

m LI I [I I I
State Zip, APO, or FPO

if civilian employee, enter GS-level (contractors onusr 00):

If member of military, enter branch of service: EIII

Fig. 2 - Possible format for addresses

CL 1 aud o r Ir 1i i I tyI I 1

street eddreee-er P 1ML

ItW i T' 1 1 " 11E I I I I I I TI
C ty

iftW n~l [I I I Irt I I I M a s) I I I I -
Vitle GCtven Nowe (Ftret. Middle Nae)

Last Name

I I I L. I I I I I I I I I I I I I I Iirsoth or Code

If civilian ioyea, enter GS-lavel (contractors enter 00):

Zf member of military, enter branch of service: |JJIIJ

Fig. 3 - Possible format for addresses

11

Tntle (e.g.. Mr.,
No., Dr., CAPT)

stats
[11mrrii
Zip, APO or FPO

D. L. PARNAS

Fig. 4 - Typical initial list of properties that are assumed to remain true

We would hope that after such a list of assumptions was circulated, the following objec-
tions would be noted:

* Middle names may also be relevant (for example, to distinguish John Lyle Smith from
John David Smith).

* An jdentifier of an internal mail post or other internal organizational division (such as,
Code 5403; Information Systems Branch, etc.) may be relevant to some of the programs.

* A title such as Capt, Prof, Dr, Maj, etc. may be included in the address and be relevant
for some purposes. It is important that name and title not be confused.

* Not all addresses contain the city and state and zip code in the single-line format as
described. Certain input data may contain the zip code at some other point in the address.
Further, in the addresses of military units overseas (APO NEW YORK 09175), the format is
not valid at all. Even if one is willing to construe APO as a city in New York, the comma is
not present.

* Certain organizations demand that civilian employees include their civil service grade,
and this information may also be relevant for some of the processing.

* Some data sets may contain the branch of service for members of the military. This
information is necessary in some applications because the title has different significance in
different services. (Compare the treatment given Marine captains with that given Navy cap-
tains.)

* Many of the above items will often be absent from an address.

These errors in Fig. 4 are simply indications that the addresses examined in drawing up
the list of assumptions had some properties that were not common to all the addresses that
might be encountered. The exceptions might even have been known to the person who drew
up the list, but he overlooked them. One purpose of compiling a list of assumptions and ob-
taining the approval of others in the organization is to increase our chance of finding such
oversights at an early stage, before they can do much harm.

A more realistic list of assumptions is shown in Fig. 5. These assumptions identify the
information that may be found in an address but make absolutely no statement about the posi-
tion within the address at which it may be found, A program that could be demonstrated to be

12

The following items of information will be contained in
addresses and can be identified by analysis of the input
data; this information is the only information that will
be relevant for our computer programs:

* Last name
* First name
* Organization
* Street address
* City, state and zip code {single line with a comma between city and state)

NRL REPORT 8047

* Internal identifier (Branch or Code) Fig. 5 - List of assumptions that is
* Street address or P.O. box more realistic than the list in Fig. 4

* City or mail unit identifier
* State
* Zip code
* Title
* Branch of service
* GS grade

Each of the above will be strings of characters in the
standard ANSI alphabet, and each of the above may be
empty or blank.

correct making only the assumptions given in Fig. 5 could be used on an address file that con-
tained addresses in scrambled formats. The assumptions are that the information can be found
and that no other information will be needed; they do not tell us how to find the information
or put any constraints on possible values.

The assumptions in Fig. 5 tell us that, if we have a file of addresses sequentially num-
bered, we can implement functions such as (a) FETTITGi), which is a string-valued function
that fetches the title to be found in the ith address in the file, and (b) SETTIT(is), where i
refers to an address in the file and s is a string. Calling SETTIT(i,s) has the effect that after-
ward FETTIT will return the string s.

These assumptions are not very strong, but they allow one to write any application pro-
grams that do not need to make assumptions about the lengths of the strings, the possible con-
tents of the strings, etc. An example would be a program that types out individualized form
letters ("Dear Capt. Smith, We were pleased to learn that you have achieved the rank of Capt
because now we can offer you...")*.

The assumptions enable us to define the abstract interface among all programs to be writ-
ten to process the address lists by the informal specifications given in Fig. 6 or the formal
specifications given in Fig. 7. Guttag [71 is a good introduction to reading the specifications in
Fig. 7.

'For many programs one would make additional assumptions. For example, one might assume that if a military rank is
given, then branch of service will be supplied, and that if a GS grade is provided, branch of service and a military rank
will not be given. Such assumptions should be stated explicitly, because programs that make them might function in-
correctly if the address file contains the address of a retired officer who still uses his title and branch of service but
now holds a civil service job.

13

The following items of information will be found in
the addresses to be processed and constitute the only
items of relevance to the application programs:

* Last name
* Given names (first name and possible middle names)
* Organization (Command or Activity)

D. L. PARNAS

FUNCTION:

INPUT PARAMETERS:

Name

CTR

STR

ADOCITYICTRSTRI

Type

Integer

String

MODULE: ASM

DescrIption

Number of address being accessed

String to be stored as new CITY
field of address

FUNCTION VALUE TYPE. None

FUNCTION VALUE: None

EFFECTS: Stores string STR in CITY field of address CTR.
Error call if CTR C 1 or CTR FETNUM

FUNCTION:

INPUT PARAMETERS:

Name

CTR

STR

ADDCORA4CTR,STR)

Type

Integer

String

MODULE: ASM IADD COMMAND OR ACTIVITY]

Description

Number of address being accessed

String to be stored as new CORA
field of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string STR in CORA field of address CTR.
Error call if CTR < I or CTR FETNUM

FUNCTION:

INPUT PARAMETERS:

Name

CTR

STR

ADDGNICTH,STR)

Type

Integer

String

MODULE: ASM tADD GIVEN NAMEI

Description

Number of address being accessed

String to be stored as new GN field
of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string STR in GN field of address GTR.
Error call if CTR < I or CTR FETNUM

Fig. 6 - Informal specifications

14

NRL REPORT 8047

FUNCTION- ADDGSL(CTRSTR) MODULE: ASM [ADD G S LEVEL]

INPUT PARAMETERS:

Name Type Description

CTR Integer Number of address being accessed

STR String String to be stored as new GSL
field of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string STR in GSL field of address CTR.
Error call if CTR < 1 or CTR FETNUM

FUNCTION: ADDLN(CTRSTRI MODULE: ASM [ADD LAST NAME]

INPUT PARAMETERS:

Name Type Description

CTR Integer Number of address being accessed

STR String String to be stored as new LN
field of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string 5TR in LN field of address CTR.
Error call if CTR < 1 or CTR FETNUM

FUNCTION: ADDSERV(CTRSTR) MODULE: ASM [ADD SERVICE BRANCH]

INPUT PARAMETERS:

Name Type Description

CTR Integer Number of address being accessed

STR String String to be stored as new SERV
field of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string STR in SERV field of address CTH.
Error call if CTR C 1 or CTR FETNUM

Fig. 6 (Continued) - Informal specifications

15

D. L. PARNAS

FUNCTiON:

INPUT PARAMETERS:

Name

CTR

ADDSORP{CTRSTR)

Type

Integer

STR String

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string STR in SORP field of address CTR.
Error call if CTR < I or CTR FETNUM

FUNCTION:

INPUT PARAMETERS:

AODSTATECTRSTR)

MODULE: ASM 1ADD STREET OR P.O. BOX)

Description

Number of address being accessed

String to be stored as new SORP
field of address

MODULE: ASM {ADD STATE]

Name

CTR

STR

Type

Integer

String

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string STR in STATE field of address CTR.
Error call if CTR K 1 or CTR FETNUM

FUNCTION:

INPUT PARAMETERS:

Name

CTR

STR

ADDTITICTH ,STRI

Type

Integer

String

MODULE: ASM JADD TiTLE]

Description

Number of address being accessed

String to be stored as new TIT
field of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string STR in TIT field of address CTR.
Error call if CTR K 1 or CTR FETNUM

Fig. 6 (Continued) - Informal specifications

16

Description

Number of address being accessed

String to be stored as new STATE
field of address

NRL REPORT 8047

FUNCTION:

INPUT PARAMETERS:

Name

CTR

STR

ADDZIP(CTR,STR)

Type

Integer

String

MODULE: ASM

Description

Number of address being accessed

String to be stored as new ZIP
field of address

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Stores string STR in ZIP field
Error call if CTR < 1 or CTR FETNUM

FUNCTION:

INPUT PARAMETERS: None

Name

of address CTR.

INIT

Type

MODULE: ASM

Description

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Initializes storage array by declaring size and dimension and setting
flags for maximum number of addresses allowed

FUNCTION:

INPUT PARAMETERS:

FETBORC(CTR J MODULE: ASM [FETCH BRANCH OR CODE]

Name Type Description

CTR Integer Number of address being accessed

FUNCTION VALUE TYPE: String

FUNCTION VALUE: BORC field of address CTR

EFFECTS: Error call if CTR < 1 or CTR > FETNUM

Fig. 6 (Continued) - Informal specifications

17

[ADD ZIP CODE]

[INITIATE]

D. L. PARNAS

FUNCTION: FETCITYICTR)

INPUT PARAMETERS:

Name Type

CTR Integer

FUNCTION VALUE TYPE: String

FUNCTION VALUE: CITY field of address CTR

EFFECTS: Error Call if CTR < I or CTR> FETNUM

MODULE, ASM IFETH CiTY]

Description

Number of address being accessed

FUNCTION: FETCORAICTR)

INPUT PARAMETERS:

Name Type

CTR Integer

FUNCTION VALUE TYPE. String

FUNCTION VALUE: CORA field of address CTR

EFFECTS: Error call if CTR C I or CTR > FETNUM

MODULE: ASM [FETCH COMMAND OR ACTIVITY]

Description

Number of address being accessed

FUNCTION: FETGNICTR) MODULE: ASM

INPUT PARAMETERS:

Name Type Description

CTR Integer Number of address I

FUNCTION VALUE TYPE: String

FUNCTION VALUE: 61 field of address CTR

EFFECTS: Error call if CTR < 1 or CTR > FETNUM

Fig. 6 (Continued) - Informal specifications

[FETCH GIVEN NAME]

beiny accessed

18

NRL REPORT 8047

FUNCTION:

INPUT PARAMETERS:

FETGSL(CTR) MODULE: ASM [FETCH GS LEVEL]

Name Type

CTR Integer

FUNCTION VALUE TYPE: String

FUNCTION VALUE: GSL field of address CTR

EFFECTS: Error call if CTR < 1 or CTR > FETNUM

Description

Number of address being accessed

FUNCTION:

INPUT PARAMETERS:

FETLN(CTR) MODULE: ASM [FETCH LAST NAME]

Name

CTR

Type

Integer

FUNCTION VALUE TYPE: String

FUNCTION VALUE: LN field of address CTR

EFFECTS: Error call if CTR C 1 or CTR > FETNUM

FUNCTION:

INPUT PARAMETERS:

FETSERV(CTR) MODULE: ASM [FETCH SERVICE]

Name Type Description

CTR Integer Number of address being accessed

FUNCTION VALUE TYPE: String

FUNCTION VALUE: SERV field of address CTR

EFFECTS: Error call if CTR C 1 or CTR > FETNUM

Fig. 6 (Continued) - Informal specifications

19

Description

Number of address being accessed

D, L. PARNAS

FUNCTION: FETSORHPCTR)

INPUT PARAMETERS:

Name Type

CTR Integer

FUNCTION VALUE TYPE: String

FUNCTION VALUE: SORP field of address 0Tt

EFFECTS: Error call if CTR < I or CTR > FETNUM

MODULE: ASM

Description

Number of address being accessed

FUNCTION:

INPUT PARAMETERS:

FETSTATE(CTR) MODULE: ASM fFETCH STATE]

Name Type

CTH Integer

FUNCTION VALUE TYPE: String

FUNCTION VALUE. String

FUNCTION VALUE: STATE field of address CTR

EFFECTS: Error call if CTR C 1 or CTR > FETNUM

Description

Number of address being accessed

FUNCTION: FETTITfCTRW MODULE: ASM

INPUT PARAMETERS:

Name Type Description

CTR Integer Number of addres

FUNCTION VALUE TYPE: String

FUNCTION VALUE: TIT field of address CTR

EFFECTS: Error call if CTR C I or CTR > FETNUM

Fig. 6 (Continued) - Informal specifications

!FETCH TITLE)

ea being accessed

20

[FETCH STREET OR P.O. BOX]

EEEE�l

NRL REPORT 8047

FUNCTION: FETZIP(CTR)

INPUT PARAMETERS:

Name Type

CTR IInteger

FUNCTION VALUE TYPE: String

FUNCTION VALUE: ZIP field of address CTR

EFFECTS: Error call if CTR < I or CTR > FETNUM

MODULE: ASM [FETCH ZIP CODE]

Description

Number of address being accessed

FUNCTION:

INPUT PARAMETERS:

Name

N

SETNUM(N)

Type

Integer

MODULE: ASM

Description

Number of addresses read

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Sets number of addresses actually stored.

FUNCTION:

INPUT PARAMETERS: None

Name

FETNUM

Type

MODULE: ASM [FETCH NUMBER]

Description

FUNCTION VALUE TYPE: Integer

FUNCTION VALUE: Number of addresses stored by ASM

EFFECTS: None

Fig. 6 (Continued) - Informal specifications

21

[SET NUMBER]

D. L. PARNAS

MODULE: ASM

SYNTAX

4 asm *

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

X integer

-> integer

X string

X string

X string

X string

X string

X string

X string

X string

X string

X string

X string

4 asm *

-4 string

.4 string

-4 string

-4 string

string

-4 string

-4 string

-4 string

-* string

-4 string

.4 string

string

Fig. 7 - ForrSi specifications

22

-4 asm
-4 asm

-+ asm

-4 asm

.4 asm

-4 asm

-4 asm

-4 asm

-4 asm
.4 asm

-4 asm

4

4

4

*
*

4

*

4

*

IN IT

A3DTiT:

ADDGN:

ADDLN:

ADDSERV:

ADDBORC:

ADDCORA:

ADDSORP:

ADOCITY:

ADDSTATE:

ADDZIP:

ADDGSL:

SETNUM:

FETTIT:

FETGN:

FETGN:

FETLN:

FFTSERV

FETBORC:

FETCORA:

FETSORP:

FETCITY:

FETSTATE:

FETZIP:

FETGSL:

FETNUM:

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

asm

NRL REPORT 8047

Explicit parameters: Integer addr and string str

Implicit parameters:

Type Name Default

asm asm System asm

*Function value type: hidden from user.

Semantics:

V integer addr, V asm asm, V string str

FETa (INIT, addr) = error

If addr < 0 or addr > FETNUM(asm)

then FETa(asm,addr) = error

else FETa (ADDJ(asm,addr,str), addr') =

if a * 0 or addr * addr'

then FETa (asm,addr')

else str

FETNUM(INIT) = error

FETNUM(SETNUM(asm,i)) = i

FETNUM(ADDa(asm,addr,str)) = FETNUM(asm}

FETNUM(FETa(asm,addr)) = FETNUM(asm)

where a and f range over the strings:

{'GN', 'LN', 'SERV', 'BORC', 'CORA', 'SORP', 'CITY', 'STATE' 'ZIP', 'TIT', 'GSL'}

Fig. 7 (Continued) - Fornal specifications

23

D. L. PARNAS

These specifications have been used (in an NRL course on software engineering) to pro-
cess address lists, of which some were in the format shown in Fig. 2 and others were in that
shown in Fig. 3. The application programs were used without change for files of both formats.
The file access functions defined in Figs. 6 and 7 were used without change by several applica-
tion programs. One of the applications was a program to select the addresses within the Wash-
ington Military District (using the zip code); the other picked out VIPs, considering all officers
of RANK 0-6 or higher and all "equivalent' civilians as VIPs. The method used was indepen-
dent of the format of the input; use of the abstract interface allowed these programs to be pro-
cured without knowledge of the input format and to be used with two distinct file formats.

ON THE NEED FOR ASSUMPTIONS THAT ARE
NOT SHARED BY ALL POSSIBLE INTERFACES

The assumptions that were listed and expressed in the specifications are sufficient for
writing some of the application programs but may not be sufficient for all of them. For exam-
ple, we have stated that the zip code will be a string and have not stated that the string is a
nonnegative integer less than 10000. Any program that made this assumption (for example, by
using the zip code as an index to a 10,000-element array) could not be demonstrated to be
corect without stating this additional assumption. The price that one pays for making this as-
sumption is that it rules out postal codes for many foreign countries. This may be an accept-
able limitation; a program computing statistics on U.S. zip-code usage is inherently restricted
in its applicability. We should however avoid making such an assumption unwittingly. The
use of precise specifications and a programming-language compiler that performs type-checking
18,91 would detect many such errors early in the development of the system.

In procuring a set of programs using an abstract interface, where some of the programs
need not make the additional assumptions, it is preferable that the additional information (the
less abstract interface) not be supplied to those writing programs that can be written without it
W31.

If two programs are based on more assumptions than the rest of the package, they need
not necessarily make the same additional assumptions. One example would be a program that
was designed to process British addresses to determine which county the addressee lived in.
Such programs would want to assume that the postal code was a six-character string with the
mnemonic coding used in Britain. Other programs might make the assumption that "title" was
restricted to military ranks. Use of the phrase "less abstract" may be an abuse of language. It
implies an ordering that may not exist.

COMPLETING THE SYSTEM BY STEPWISE
ADDITION OF ASSUMPTIONS

As we stated earlier, the assumptions implicit in the abstract-interface specifications will
not usually allow us to write a complete system*. To complete the system, we must make addi-
tional assumptions.

'The exception to this 'tatemextt would be all of the possible interfaces being such that one can identify the actual in-
terface by studying the input data.

24

NRL REPORT 8047

Often one will complete the system in a single step, but sometimes it pays to proceed
more slowly. Consider the address file specification and set of assumptions. They assume a
previously defined data-type string. If the language or library does not include a string-
manipulation facility, such a facility must be provided to complete the system. For any string
implementation some assumptions must be made about the total number of strings in the sys-
tem and their expected size. In applications like ours it is reasonable to assume a fixed upper
bound for the length of a string. Using this additional information, one can define an interface
to the string-manipulation package (Figs. 8 and 9). The implementation of these functions:
gives us a second component of our system. The first component will work for any format that
meets our original assumptions. The second component assumes nothing about the order or
content of the input information but assumes that no item need exceed a set length. Use of
the combined package is predicated on both sets of assumptions, but should the maximum-
length assumption prove wrong, only the string portion need be changed. The implementation
of the FETCH and SET functions will then assume a complete description of the actual format
including the fixed-length limitation.

One way that the additional assumptions may be made explicit in the definition of the
abstract interface is by the introduction of functions that are not implementable unless the as-
sumptions are met. For example, if we are willing to make the assumption that the address al-
ways determines the county in which the address is located, we may add the function COUN-
TY to the abstract interface. Programs that use COUNTY can be used only with input files
such that the county can be determined from the data present.

WHERE IS THE SEMANTIC SPECIFICATION?

Notably absent from any of the assumptions or interface specifications in this report is
any formal statement about the meaning of the information in the strings. Nothing in our in-
terface forbids someone inserting a house number in the zip code field or interpreting a zip
code as a house number.

Systems of the sort that we are discussing provide information storage, transmission, and
retrieval functions. Any assumptions about the relation between the information in the sys-
tem and phenomena in the outside world are agreements between those who insert data in the
system and those who use data from the system. The system is not concerned with any as-
pects that it is not required to verify.

Any information about the meaning of the data (how it is obtained or what should be
done with it) will not be part of the abstract (or internal) interface that we are discussing. The
specifications for the larger system of which the embedded computer system is a part must in-
clude this additional information.

IMPLEMENTATION CONSIDERATIONS
AND LANGUAGE LIMITATIONS

The specifications that are obtained by following the method proposed in this report as-
sume the existence of data types that might not be built into the programming language being
used. In the address example the specifications referred to a type (string) that is available in

25

D. L. PARNAS

NAME: BLANKSTRING MODULE: STM

SYNTAX

BLANKSTRING: - string

Explicit parameters: None

Implicit parameters: None

Function value type: string

SEMANTICS

Initial value: None

Function value: str e string, such that

v i, 1 < i < MAXSTRING, RETCHARIstr,i) =

Effects: None

NAME: INSERT MODULE: STM

SYNTAX

INSERT: string X integer X char - string

Explicit parameters. string str, integer Joc, char c

Implicit parameters: None

Function value type: string

SEMANTICS

Initial value: None

Function value: str, such that

V i, 1 C i < MAXSTRING, if i = loc, then CHAREQ(cRETCHAR(stri)) = TRUE

else CHAR EQIR ETCHAR lstri) ,R ETCHAR lstr',i)) = TRUE

Effects: If Joc< 1 or loc> MAXSTRING, then ERRORCALL

Fig. 8 - Formal specification of the sting modules (STM)

26

NRL REPORT 8047

NAME: MAXSTRING MODULE: STM

SYNTAX

MAXSTRING - integer

Explicit parameters: None

Implicit parameters: None

Function value type: integer

SEMANTICS

Initial value: None

Function value: k, such that Vi, 1 C i C k,

CHAREQ(RETCHAR(BLANKSTRINGiL'' TRUE

and Vj, j > k, Vs e string

RETCHAR(sil is undefined

Effects: None

NAME: RETCHAR MODULE: STM

SYNTAX

RETCHAR: string X integer - char

Explicit parameters: string str, integer loc

Implicit parameters: None

Function value type: integer

SEMANTICS

Initial value: None

Function value: V i, j 1 C i, j < MAXSTRING,

RETCHAR(BLANKSTRING,i) ='

RETCHAR(INSERT(str,ic),j) = if i = I

then c

else RETCHAR(strj)

Fig. 8 (Continued) - Formal specification of the string module (STM)

27

D. L. PARN AS

FUNCTION CALLING FORM: BLANKSTRING{NEW)

INPUT PARAMETERS:

Name

NEW

Type

String

MODULE: STM

Description

Fixed-length string consisting
of blanks which is returned

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Initializes a string, NEW, to blanks and returns it

FUNCTION CALLING FORM: INSERT(STRLOCCHR)

INPUT PARAMETERS:

Name

STR

Type
String

MODULE: STM

Description

String to be processed

LOC Integer Position in stri

CF-R Char Character to b

FUNCTION VALUE TYPE: None

FUNCTION VALUE: None

EFFECTS: Repiaces LOCth character of STR with CHR. Error call if LOC < 1 or

LOC > MAXSTRING

FUNCTION CALLING FORM: MAXSTRING

INPUT PARAMETERS: None

Name Type

FUNCTION VALUE TYPE: Integer

FUNCTION VALUE: Length of strings

EFFECTS: None

FUNCTION CALLING FORM: RETCHAR(STR,LOC)

iNPUT PARAMETERS:

Name Type

STR String

LOC Integer

MODULE, STM

Description

MODULE: STM

Description

String to be accessed

Location in string of
character sought

FUNCTION VALUE TYPE: Char

FUNCTION VALUE: The character in the LOCth position in string STR.

EFFECTS: Error call if LOC < 1 or LOC > MAXSTRING

Fig. 9 - Informal specifiation of the string module.

28

ng to insert character

e inserted

NRL REPORT 8047

some languages but unavailable or available with strong limitations in other languages. In oth-
er examples we would write specifications in terms of even more specialized types (such as
dates) that would certainly not be built into a language.

The assumption of the existence of a data type is the assumption of the existence of data
elements and operators. If they are not built into the language, there is no reason the opera-
tors cannot be provided by means of macros or subroutines. However our specifications go
further - they assume the ability to pass objects or values of the special type to procedures
and the ability to define procedures that return values of this type.

If the language that must be used does not provide data-type extensibility, there is always
a subterfuge by which the ability to pass and return values of the new type can be simulated.
The method chosen will depend on the language availahie, the relative importance of time and
space efficiency, and security considerations. Whatever the method chosen, it will require the
adoption of certain programming conventions. (Often these conventions cannot be enforced
by the compiler.) The adoption of these conventions will sometimes be simply a further
refinement of the abstract interface (making futher assumptions); in other cases it will require
a change in the syntax for calls on the functions defined by the specifications. The semantics
of the functions specified will stay the same, but parameters may be passed through common
blocks, global variables, pointers, etc.

The need to refine or alter our interface to accommodate the limitations of our present
programming tools does not contradict the validity of the proposed method. In the actual im-
plementation the syntax used for calling functions and communicating information between
calling program and called program may be different from that specified during the design of
the interface, but the information to be passed will not be affected.

CONCLUDING REMARKS

The purpose of this report has been to explain and demonstrate a systematic software-
procurement procedure by means of which one may isolate the bulk of the software from
changes in the actual external interface. If the specifications of the abstract interface are used
to define the responsibility of the organization that delivers the internal software, that organiza-
tion is effectively prevented from producing a system that is tied to any one particular inter-
face. Moreover they must deliver a program that can be "completed" by persons without
knowledge of internal details.

There are additional benefits. This process leads toward what is sometimes referred to as
a cleaner structure of the software - one in which there is a good separation of concerns, al-
lowing each component to be simpler and more easily understood. Further, those components
that are not cognizant of the real-world details of the interface can be more elegant and subject
to a more mathematical analysis. Elegance is not a property of systems that must deal with
ugly real world facts, but it can be obtained in those components that are separated from the
real world by the use of well-defined interfaces.

REFERENCES
1. D.L. Parnas, "On the Design and Development of Program Families," IEEE Transactions

on Software Engineering SE-2 (No. 1), 1-9 (Mar. 1976).

29

D. L. PARNAS

2. D.L. Parnas, "On the Criteria To Be Used in Decomposing Systems into Modules)" Com-
munications of the ACM 15 (No. 12), 1053-1058 (Dec. 1972).

3. D.L. Parnas, "Information Distribution Aspects of Design Methodology, Proceedings," 1971
IFIP Congress) North Holland Publishing Co.

4. D.L. Parnas, "A Technique for Software Module Specification with Examples," Communica-
tions of the ACM 15 (No. 5), 330-336 (May 1972).

5. E.W, Dijkstra, C.A.R. Hoare, and O.J. Dahl, Structured Programming, Academic Press, Lon-
don) 1972.

6. N. Wirth, "Program Development by Stepwise Refinement," Communications of the ACM
14 (No. 4), 221-227 (Apr. 1971).

7. J. Guttag, "Abstract Data Types and the Development of Data Structures," SIGPLAN, SIG-
MOD Conference on DATA: Abstraction Definition and Structure (to be published in
Communications of the ACM).

8, D.L. Parnas, J. Shore, and D. Weiss, "Abstract Types Defined as Classes of Variables$t
Proceedings of ACM Conference on DATA: Abstraction, Definition, and Structure)
March, 1976.

9. CS-4 Language Reference Manual and Operating System Interface, Oct. 1975, Intermetrics,
Inc.

ACKNOWLEDGMENTS

Discussions with H. Elovitz, John Guttag, John Shore, Barbara Trombka, and David
Weiss have contributed a great deal to this report. Questions raised by H. Elovitz in an effort
to apply these concepts led to especially significant changes.

30

